Section 2.3: Acceleration-velocity models

We have already done constant acceleration.
We now let the acceleration vary.
Most problems in the book do acceleration due to gravity, modified by some resistance.

We study:

- Resistance proportional to speed: $d v / d t=-g-p v$
- resistance proportional to $\mathrm{v} \wedge 2$
- $d v / d t=-g-p v|v|$
- Force that depends on position. e.g. gravity at a distance from our planet.

$$
\frac{d^{2} r}{d t^{2}}=\frac{-G M}{r^{2}}
$$

New vocabulary: Terminal velocity, escape velocity.

Resistance proportional to speed, such as

$$
\frac{d v}{d t}=-g-\rho v
$$

Here $v=d x / d t$ where $x=$ distance measured vertically up, g is the acceleration due to gravity.
$\begin{array}{ll}\begin{array}{l}p \text { is a resistance } \\ \text { coefficient. }\end{array} & -p v \downarrow \downarrow^{\vee} \downarrow_{-g} \\ & \uparrow-p v \quad \downarrow-g\end{array}$
Solution.

$$
\begin{aligned}
& \int \frac{d v}{-g-p v}=\int d t \\
& -\frac{1}{p} \ln (g+p v)=t+C, \ln (g+p v)=-p t+B \\
& g+p v=e^{-p t+B}=A e^{-p t}
\end{aligned}
$$

$$
\begin{aligned}
& v=D e^{-p t}-\frac{g}{p} \\
& \text { f } v(O)=0 \text { then } 0=D \sim \frac{g}{p} \\
& D=\frac{g}{p} \\
& v=\frac{g}{p}\left(e^{-p t}-1\right) \\
& v i
\end{aligned}
$$

$-\frac{g}{p}$ is the terminal velocity

Pre-class Warm-up!!!
A skydiver falls with air resistance proportional to speed, according to the equation:

$$
\frac{d v}{d t}=-g-\rho v
$$

If $g=10 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ and $p=0.2 \mathrm{~s}^{\wedge}-1$ what is the skydiver's terminal speed?
a. $5 \mathrm{~m} / \mathrm{s}$
b. $10 \mathrm{~m} / \mathrm{s}$

$$
\text { Put } \frac{d v}{d t}=0
$$

$$
=-g-p r
$$

C. $50 \mathrm{~m} / \mathrm{s}$

$$
\begin{aligned}
v=-\frac{g}{p} & =-\frac{10}{0.2} \\
& =-50
\end{aligned}
$$

d. $200 \mathrm{~m} / \mathrm{s}$

$$
=-50
$$

e. Not enough information to tell.

Page 101 question 9
A motor boat weighs $32,000 \mathrm{lb}$ and its motor provides a thrust of 5000 lb . Assume that the water resistance is 100 pounds for each foot per second of the speed v of the boat. Then

$$
1000 \frac{d v}{d t}=5000-100 v
$$

If the boat starts from rest, what is the m animus velocity that it can attain?
How long does it take the boat to attain 90% of its limiting velocity?

$$
\begin{aligned}
& V=50\left(1-e^{-t / 10}\right)=45 \\
& t=10 \ln 10
\end{aligned}
$$

Motion with resistance to motion proportional to $\mathrm{v}^{\wedge} 2$

Going up or down with resistance proportional to v and gravity g :

$$
\frac{d v}{d t}=-g-p v
$$

Going up with resistance proportional to $\mathrm{v}^{\wedge} 2$, gravity g :

$$
\frac{d v}{d t}=-g-\rho v^{2}
$$

Going down with resistance proportional to $\mathrm{v} \wedge 2$, gravity g:

$$
\frac{d v}{d t}=-g+p v^{2}
$$

Solutions:

$$
\begin{equation*}
v=\sqrt{\frac{g}{\rho}} \tanh (D-t \sqrt{\rho g}) \tag{16}
\end{equation*}
$$

Page 102 question 17 (like question 20).
A bolt is shot straight up from the ground ($y=$ 0) at time $t=0$ with initial velocity $v_{-} 0=49$ m / s. Take $\mathrm{g}=10 \mathrm{~m} / \mathrm{s}^{\wedge} 2$ and $\mathrm{p}=0.0011$. Use equations 13 and 14 to show that the bolt reaches its maximum height of about 108.47 m in about 4.61 s .

Solution Put $t=0$

$$
\begin{aligned}
& v_{0}=49=\sqrt{\frac{g}{p}} \tan (D-0), \\
& D=\tan ^{-1} 49 \sqrt{0.0011}=\tan ^{-1} \begin{array}{l}
\text { some } \\
\text { number. }
\end{array}
\end{aligned}
$$

The maximum height happens when

$$
r=0, \text { so } \tan (D-t \sqrt{p g})=0
$$

$D=t \sqrt{p g} \quad t=\frac{D}{\sqrt{p g}}=$ some umber.

Question. The function tan eventually tends to infinity as t increases, suggesting that the bolt goes faster and faster, without bound. What is going on here?
a. This is correct. It is what happens.
b. There is something wrong with the equation we are using.
c. There was a mistake in the way the solution was found. When the bolt starts going,
d. Something else. down we use the 'down'
(13) $v=\sqrt{\frac{g}{\rho}} \tan (D-t \sqrt{\rho g})$ equation

Newton's law of gravitation.

Newton: $m \frac{d^{2} r}{d t^{2}}=-\frac{G M m}{r^{2}}$

Newton with thrust:

$$
m \frac{d^{2} r}{d t^{2}}=\frac{-G M_{m}}{r^{2}}+m T
$$

We solve: $\frac{d^{2}}{d t^{2}}=-\frac{G M}{r^{2}}+T$
Recce theorder: $v=\frac{d r}{d t}, \frac{d^{2} r}{d t^{2}}=\frac{d v}{d t}$

$$
\begin{aligned}
& =\frac{d v}{d r} \frac{d r}{d t}=v \frac{d v}{d r}=-\frac{G M}{r^{2}}+T \\
& \int v d v=\int\left(-\frac{G M}{r^{2}}+T\right) d r
\end{aligned}
$$

$$
\begin{aligned}
& \frac{v^{2}}{2}=\frac{G M}{r}+T r+C \\
& v=\sqrt{\frac{2 G M}{r}+2 \operatorname{Tr}+2 C}
\end{aligned}
$$

In questions T never appears. It does appear in an example in the text with a moon lander. Otherwise forget T .

$$
\begin{aligned}
v=\sqrt{\frac{2 G M}{r}+2 C} \quad C=\frac{v_{0}^{2}}{2}-\frac{G M}{r_{0}} & >0 \\
\text { if } v_{0} & >\sqrt{\frac{2 G M}{r_{0}}}
\end{aligned}
$$

If a ball is thrown from the surface of the earth and $r_{0}=$ radius of the earth, the ball never comes down.

Escape velocity: $\sqrt{\frac{2 G M}{R}}$
The following values can be found in places in the book, but it is not easy to find them:

$$
\begin{array}{rlrl}
G= & 6.6726 \times 10^{-11} & \mathrm{~N}(\mathrm{~m} / \mathrm{kg})^{2} & \\
& \text { on } p 99 \\
M=5.975 \times 10^{26} \mathrm{~kg} & & \text { on } p 100 \\
R= & 6.378 \times 10^{6} \mathrm{~m} & & \text { on p100 }
\end{array}
$$

The moon has

$$
M=7.35 \times 10^{22} \mathrm{~kg} \quad p 99
$$

Page 102 question 24(a)
To what radius must the earth be compressed to be a black hole (meaning the escape velocity is $\left.\mathrm{c}=3 \times 10^{\wedge} 8 \mathrm{~m} / \mathrm{s}\right)$?
Solution.
Find R so that $\sqrt{\frac{2 G M}{R}}=C$

$$
R=\frac{2 G M}{c^{2}}=\frac{2 \cdot 6 \cdot 10^{-11} \cdot 6 \cdot 10^{24}}{\left(3 \times 10^{8}\right)^{2}}
$$

Like page 102 question 25 (on the HW)
A projectile is launched straight up from the earth's surface. What must the initial velocity be for it to reach a height of 10 km ?

